Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-(3-Methylphenoxymethyl)-4-phenyl-1,2,4-triazole-3-thione

Tai-Bao Wei, ${ }^{\text {a }}$ Rong Luo, ${ }^{\text {a }}$ Hong Liu, ${ }^{\text {a }}$ You-Ming Zhang ${ }^{\text {a }}$ and Tong-Bu Lu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Gansu Key Laboratory of Polymer Materials, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Chemical Engineering, and Instrumentation, Analysis \& Research Center, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

Correspondence e-mail: Ihhl@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.098$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$, molecules form inversionrelated dimers via $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds. The structure is further stabilized by intermolecular $\pi-\pi$ stacking interactions down the a axis.

Comment

Substituted triazole derivatives display significant biological activity including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral activities (Kritsanida et al., 2002). The biological activity is closely related to the structure, possibly being due to the presence of the $-\mathrm{N}-\mathrm{C}=\mathrm{S}$ unit (Omar et al., 1986). We are interested in the synthesis and biological activity of aryloxyacetyl hydrazide derivatives and report here the synthesis and crystal structure of the title compound, (I) (Fig. 1).

(I)

Compound (I) contains a planar triazolethione ring (mean deviation from the ring plane $=0.0008 \AA$). The dihedral angle between the C11-C16 phenyl ring and the triazole ring is $72.6(2)^{\circ}$. In the crystal structure, molecules are linked into inversion-related dimers in the ac plane by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 1 and Fig. 2).

The $\mathrm{C} 11-\mathrm{C} 16$ and $\mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 16^{\mathrm{i}}$ phenyl rings [symmetry code: (i) $2-x,-y, 1-z]$ are parallel by symmetry, with a centroidcentroid distance of $4.070 \AA$. They thus form slipped-parallel dimers (Tsuzuki et al., 2002; Hobza et al., 1996); these intermolecular $\pi-\pi$ interactions further stabilize the structure.

Experimental

The synthesis of the title compound was carried out by refluxing a solution of 1-(3-methylphenoxyacetyl)-4-phenylthiosemicarbazide (10 mmol) in 2 M NaOH for 2 h . Colorless single crystals of (I) were obtained by slow evaporation of an ethanol solution over a period of about one week.

Received 14 November 2006
Accepted 17 November 2006

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=297.37$
Triclinic, $P \overline{1}$
$a=6.9579(12) \AA$
$b=9.8402(18) \AA$
$c=11.686(2) \AA$
$\alpha=74.127(3)^{\circ}$
$\beta=78.039(3)^{\circ}$
$\gamma=82.196(3)^{\circ}$

$$
V=750.2(2) \AA^{3}
$$

$Z=2$
$D_{x}=1.316 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.55 \times 0.47 \times 0.32 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	6291 measured reflections
\quad diffractometer	2920 independent reflections
φ and ω scans	2337 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.016$
$\quad(S A D A B S ;$ Bruker, 1998$)$	$\theta_{\max }=26.0^{\circ}$
$\quad T_{\min }=0.890, T_{\max }=0.934$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.098$
$S=1.03$
2920 reflections
195 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.86(2)$	$2.40(2)$	$3.2588(14)$	$176.6(17)$

Symmetry code: (i) $-x+3,-y,-z$.
The N-bound H atom was located in a difference Fourier map and refined freely, with an isotropic displacement parameter. All other H

Figure 2
Packing diagram for (I), with hydrogen bonds shown as dashed lines.
atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and refined using a riding model, with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}$ (methyl C) and $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Financial support of this work by the Natural Science Foundation (No. 20371040) of China, the Natural Science Foundation (No. 031-A21-004) of Gansu province, and the Foundation (No. 02-18) of Northwest Normal University are acknowledged.

References

Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Demirbas, N., Ugurluoglu, R. \& Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hobza, P., Selzle, L. H. \& Schlag, W. E. (1996). J. Phys. Chem. 100, 1879018794.

Holla, B. S., Gonsalves, R. \& Shenoy, S. (1998). Il Farmaco, 53, 574-578.
Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., PapakonstantinouGaroufalias, S., Pannecouque, C., Witvrouw, M. \& Clercq, E. D. (2002). Il Farmaco, 57, 253-257.
Omar, A., Mohsen, M. E. \& Wafa, O. A. (1986). Heterocycl. Chem. 23, 13391341.

Paulvannan, K., Chen, T. \& Hale, R. (2000). Tetrahedron, 56, 8071-8076.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. \& Tanabe, K. (2002). J. Am. Chem. Soc. 124, 104-112.
Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. \& Kilic, F. S. (1999). Il Farmaco, 54, 218-223.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

